Алгоритм работы насос-форсунки

5.0/5 оценка (3 голосов)

Алгоритм работы насос-форсунки дизельного двигателя

      Качество распыления дизельного топлива в цилиндре, во многом определяет процесс его горения, и образования токсичных веществ в отработавших газах. Более качественное распыление достигается при высоком давлении, порядка 1800 бар и выше. Однако устаревшие системы дизельных двигателей не могут обеспечить подачу топлива к форсункам под таким давлением, т.к. в таком случае потребовались бы делать топливопроводы высокого давления, с очень большим наружным диаметром из-за увеличения толщины стенок. Чтобы не применять громоздких топливопроводов при увеличении давления впрыска, многие ведущие автомобильные фирмы начали применять насос-форсунки с электронным управлением.

Насос-форсунка представляет собой впрыскивающий насос с узлом управления и форсунку в едином узле индивидуально на каждый цилиндр двигателя.

Система дизельной топливной аппаратуры (электронно управляемая насос-форсунка) начала применяться на грузовых автомобилях с 1994 года, а на легковых четырьмя годами позже. Модульная конструкция систем питания дизельных двигателей с насос-форсунками, позволяет устанавливать их без особых затрат времени, на двигатели различных конструкций.

Обозначение по BOSCH
UIS (UNIT-INJECTOR-SYSTEM) UPS (UNIT-PUMP-SYSTEM)
Обозначение по Delphi
EUI (Electronic Unit Injectors) EUP, (Electronic Unit Pumps)

Элемент EUI (насос- форсунка с электронным управлением) в сборе представляет собой механизм - с механическим созданием давления;

  • электронным управлением впрыска, что означает управление и контроль бортовым компьютером времени начала впрыска (угла по отношению к положению коленвала) и продолжительности впрыска, тем самым обеспечивается возможность изменять количество впрыскиваемого топлива;
  • надлежащим распылом топлива (высокого давления до 2 200 бар)

Ниже приведен наиболее упрощенный алгоритм работы насос- форсунки с электронным управлением, но именно он позволяет наилучшим образом понять схематику работы узла.

В этой позиции плунжер находится в верхней точке, а клапан управления открыт. Топливо идет через всю насос- форсунку (заполнены все полости) Кулачек давит вниз и плунжер начинает перемещаться, перекрывая входное отверстие. Впрыска не происходит, т.к. клапан все еще открыт и топливо вытесняется через него.
На актуатор (электромагнит) подается напряжение и клапан закрывается с большой скоростью. Плунжер продолжает движение вниз и давление быстро нарастает. Давление топлива преодолевает силу пружины и игла распылителя начинает открытие при давлении ~ 300 бар. Давление продолжает быстро нарастать до 1800…2200 бар и происходит впрыск топлива После окончания подачи электричества на актуатор электромагнитный клапан открывается, давление резко падает, игла форсунки по воздействием пружины  закрывает отверстие распылителя процесс впрыска заканчивается

      Таким образом, работу насос- форсунки можно условно разделить на 4 хода плунжера: ход впуска и наполнения, предварительный ход, ход нагнетания и впрыска топлива, окончание процесса впрыска. Более подробно алгоритм приведен ниже

1.    Ход впуска и наполнения.
При движения плунжера вверх, под воздействием возвратной пружины, топливо при постоянном давлении поступает по каналу 7 от  насоса низкого давления в полость клапана управления 6, который открыт под воздействием прижимной пружины, так как напряжение на соленоиде отсутствует. По каналам топливо попадает в полость высокого давления 4.
2. Предварительный ход.
Поворачиваясь кулачек кулачкового вала начинает оказывать давление на плунжер 2, который перемещается вниз. Клапан управления все еще открыт и топливо, под давлением движущегося вниз плунжера 2, вытесняется через выпускной канал 8 в систему низкого давления.
3. Ход нагнетания и процесс впрыска топлива
От блока управления на электромагнит 9 клапана управления подается напряжение, и якорь соленоидного клапана под воздействием созданного электромагнитного поля закрывает клапан, преодолевая при этом сопротивление пружины клапана. Сила магнитного потока при этом должна быть достаточно большой, чтобы обеспечить достаточное уплотнение между плоскостями 10. Чем ближе якорь расположен к ярму, тем больше сила прижатия клапана к седлу, что позволяет снизить величину тока управления соленоидным клапаном, уменьшая расход электроэнергии, и сохраняя при этом закрытое положение клапана. Сообщение между полостями высокого и низкого давления при этом перекрывается. Закрытие соленоидного клапана приводит к изменению тока катушки 9, что определяется блоком управления, как начало подачи топлива. Давление топлива в полости высокого давления при движении плунжера возрастает. Одновременно возрастает давление и в полости распылителя форсунки. При достижении давления начала подъема иглы распылителя около 300 бар игла распылителя слегка приподнимается и начинается впрыск топлива в камеру сгорания (фактическое начало впрыска или начало подачи). Давление впрыска постоянно увеличивается по мере хода плунжера насоса. . Давление продолжает быстро нарастать до 1800…2200 бар и происходит впрыск топлива
4. Окончание процесса впрыска
После полного открытия электромагнитного клапана давление резко падает, игла форсунки при этом закрывает отверстие распылителя, усилием пружины клапан управления возвращается в исходное положение и процесс впрыска заканчивается.

Примечание: 1 – кулачек кулачкового вала; 2 – плунжер; 3 – возвратная пружина; 4 – полость высокого давления; 5 – клапан соленоида; 6 – полость клапана управления; 7 – впускной канал; 8 – выпускной канал; 9 – обмотка соленоида; 10 – седло клапана; 11 – игла форсунки

Обязательным условием эффективного сгорания дизельного топлива является хорошее смесеобразование. Для этого топливо должно подаваться в цилиндр в нужном количестве, в нужный момент и как можно более высоким давлением. Уже при незначительных отклонениях от требуемых параметров распыления топлива отмечается увеличение содержания вредных веществ в отработавших газах, повышение шумности процесса сгорания и увеличение расхода топлива. Важным моментом для процесса сгорания в дизельном двигателе является малая величина задержки самовоспламенения (Задержка самовоспламенения - промежуток времени между началом впрыска топлива и началом повышения давления в цилиндре). Если в этот временной промежуток подается большое количество топлива, то это ведет к резкому повышению давления  в цилиндре, повышению нагрузок на цилиндро- порщневую группу и к резкому увеличению уровня шума процесса сгорания.

Увеличение рабочих циклов

Для достижения большей плавности протекания процесса сгорания, снижения шума и выброса токсичных веществ в насос-форсунках перед основным впрыском осуществляется предварительный впрыск (впрыск под небольшим давлением небольшого количества топлива). Благодаря сгоранию этого малого количества топлива в камере сгорания повышаются давление и температура. Вследствие чего происходит ускоренное самовоспламенение топлива, поданного в ходе основного впрыска. Предварительный впрыск и наличие паузы между предварительным и основным впрыском способствует тому, что давление в камере сгорания повышается не скачкообразно, а относительно равномерно. Вследствие этого достигается снижение шумности процесса сгорания и уменьшение эмиссии окислов азота. В таких форсунках дополнительно устанавливается разгрузочный поршень. Примитивная схема каналов и элементов у такой насос-форсунки дана ниже.

Заполнение камеры высокого давления

В процессе заполнения камеры высокого давления плунжер под действием основной пружины движется кверху, что ведет к увеличению объема камеры высокого давления. Клапан управления насос-форсунки под действием пружины клапана в момент отсутствия магнитного поля от соленоида находится в открытом состоянии и соединяет питающую магистраль и камеру высокого давления. Топливо под давлением из питающей магистрали заполняет камеру высокого давления.

Начало предварительного впрыска

Кулачек кулачкового вала поджимает плунжер книзу. Плунжер, в свою очередь, отжимает топливо из камеры высокого давления в питающую магистраль. Протекание процесса впрыска топлива происходит под управлением блока управления двигателя через соленоид и клапан управления. По сигналу от блока управления двигателем на электромагните (соленоиде) форсунки возникает магнитное поле и клапан управления прижимается к седлу, перекрывая путь топливу из камеры высокого давления в питающую магистраль. Вследствие этого происходит повышение давления в камере высокого давления. Когда давление достигает 180 бар, оно становится выше, чем усилие пружины распылителя. Игла распылителя приподнимается, и начинается предварительный впрыск.

Демпфирование хода иглы распылителя

В процессе предварительного впрыска ход иглы распылителя демпфируется гидравлическим буфером, что дает возможность точно дозировать количество впрыскиваемого топлива.

Это происходит таким образом:
на первой трети хода ничто не мешает ходу иглы. При этом в камеру сгорания предварительно впрыскивается топливо (рис А)

Как только демпферный клапан начнет перемещаться по отверстию в корпусе распылителя (рис В), топливо над иглой распылителя сможет поступать под давлением в зону размещения пружины только через зазор снизу демпферного клапана. Вследствие этого возникает гидравлический буфер, который ограничивает ход иглы распылителя при предварительном впрыске.

Конец предварительного впрыска

Под действием увеличивающегося давления перепускной клапан движется книзу, тем самым увеличивая объем камеры высокого давления. Вследствие этого давление на короткое время падает, и игла распылителя закрывается. Предварительный впрыск закончился. Вследствие перемещения вниз перепускного клапана пружина распылителя сжимается сильнее. Поэтому для повторного открытия иглы распылителя при последующем – основном - впрыске необходимо давление топлива больше, чем при предварительном впрыске.

Начало основного впрыска

Вскоре после запирания иглы распылителя давление в камере высокого давления опять поднимается. Клапан управления под воздействием электромагнита закрыт, а плунжер насос-форсунки движется вниз. Когда давление достигает примерно 300 бар, оно становится больше, чем давление пружины распылителя. Игла распылителя снова поднимается, и в камеру сгорания впрыскивается основная порция топлива. Давление при этом поднимается до 2050 бар, поскольку в камере высокого давления сжимается больше топлива, чем может его выйти через распылитель. При достижении двигателем максимальной мощности, а также при наибольшем крутящем моменте и одновременно самом большом количестве впрыскиваемого топлива давление максимально.

Конец основного впрыска

Конец впрыска, когда с блока управления двигателя перестает поступать сигнал на электромагнитный клапан. При этом клапан управления под действием пружины отходит от седла, и сжимаемое плунжером топливо может поступает во внешнюю магистраль. Давление топлива падает. Игла распылителя закрывается, и перепускной клапан под действием пружины распылителя возвращается в исходное положение. Основной впрыск закончен.

Соленоидный клапан управления

Соленоидный клапан управления можно разделить на две группы – соленоидную (электромагнитную) и непосредственно клапанную. Клапанная группа состоит из клапана управления 2 (рис.), корпуса 12 клапана составляющего единое целое с корпусом насос- форсунки и пружины клапана 1.

Соленоидный клапан управления (принципиальная схема):
1 – пружина клапана управления; 2 – клапан управления; 3 – полость высокого давления; 4 – полость низкого давления; 5 – компенсационная шайба; 6 – катушка актуатора; 7 – кожух; 8 – штекер; 9 – щель для прохода топлива; 10 – уплотнительная плоскость корпуса клапана; 11 – уплотнительная плоскость клапана; 12 – корпус; 13 – накидная гайка; 14 – магнитный диск; 15 – магнитный сердечник; 16 – якорь; 17 – уравнительная пружина

Уплотнительная плоскость 10 корпуса клапана имеет конусообразную форму. Посадочная поверхность клапана 11 имеет точно такую форму, однако угол конуса клапана немного больше угла конуса его корпуса. Когда клапан закрыт и прижат к корпусу, корпус и клапан соприкасаются только по линии седла клапана, благодаря чему достигается очень хорошее уплотнение клапана. Клапан управления и его корпус составляют прецизионную пару и очень плотно подогнаны друг к другу. Магнит состоит из ярма магнитопровода и подвижного якоря 16. Ярмо в свою очередь состоит из магнитного сердечника 15, катушки 6 и штекеров выводных контактов 8. Якорь соединен с клапаном. Между магнитным ярмом и якорем в исходном положении имеется зазор.

Последние поколения насос-форсунок

Указанные выше схемы работы имеют свое развитие в насос- форсунках следующих поколений и других производителей. Так в насос- форсунках производства компаний Delphi, Cummins, CAT клапан управления представляет собой единый узел ни с корпусом насос- форсунки, о непосредственно пару «клапан – обойма клапана», которые при необходимости заменяются в процессе ремонта. Последние поколения насос- форсунок (например, Delphi серии «Е-3») имеют ни один клапан управления, а два, что обеспечивает возможность осуществления до 5 впрысков в пределах предварительного – основного – дожигого. Данные возможности вкупе с дополнительными мерами (например установкой систем EGR, SCR) делают возможным выполнение строжайших норм по экологии («Евро 5», перспективные «Евро 6»). В перспективе разработки по объединению систем Common Rail и насос- форсунок в единую систему.

Схема управления топливной системой «насос-форсунка»

Пример схемы управления топливной системой «насос- форсунка» грузового автомобиля (VOLVO).